Modelling the mercury stable isotope distribution of Earth surface reservoirs: Implications for global Hg cycling

Ruoyu Sun a,*, Martin Jiskra b, Helen M. Amos c, Yanxu Zhang d, Elsie M. Sunderland c,e, Jeroen E. Sonke b, *

a Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
b Observatoire Midi-Pyrénées, Laboratoire Géosciences Environnement Toulouse, CNRS/IRD/Université Paul Sabatier, Toulouse 3, France
c School of Public Health, Department of Environmental Health, Harvard University, Boston, MA, USA
d School of Atmospheric Sciences, Nanjing University, Jiangsu 210023, China
e School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA

Received 19 March 2018; accepted in revised form 26 November 2018; Available online 3 December 2018

Abstract

Mercury (Hg) stable isotopes are useful to understand Hg biogeochemical cycling because physical, chemical and biological processes cause characteristic Hg isotope mass-dependent (MDF) and mass-independent (MIF) fractionation. Here, source Hg isotope signatures and process-based isotope fractionation factors are integrated into a fully coupled, global atmospheric-terrestrial-oceanic box model of MDF (\(\delta^{202}\text{Hg}\)), odd-MIF (\(\Delta^{199}\text{Hg}\)) and even-MIF (\(\Delta^{200}\text{Hg}\)). Using this bottom-up approach, we find that the simulated Hg isotope compositions are inconsistent with the observations. We then fit the Hg isotope enrichment factors for MDF, odd-MIF and even-MIF to observational Hg isotope constraints. The MDF model suggests that atmospheric Hg\(\text{O}\) photo-oxidation should enrich heavy Hg isotopes in the reactant Hg\(\text{O}\), in contrast to the experimental observations of Hg\(\text{O}\) photo-oxidation by Br. The fitted enrichment factor of terrestrial Hg\(\text{O}\) emission in the odd-MIF model (5‰) is likely biased high, suggesting that the terrestrial Hg\(\text{O}\) emission flux (160 Mg yr\(^{-1}\)) used in our standard model is underestimated. In the even-MIF model, we find that a small positive atmospheric Hg\(\text{O}\) photo-oxidation enrichment factor (0.22‰) along with enhanced atmospheric Hg\(\text{II}\) photo-reduction and atmospheric Hg\(\text{O}\) dry deposition (foliar uptake) fluxes to the terrestrial reservoir are needed to match \(\Delta^{200}\text{Hg}\) observations. Marine Hg isotope measurements are needed to further expand the use of Hg isotopes in understanding global Hg cycling.

Keywords: Mercury isotope; Global Hg cycling; Box model; Mass-dependent fractionation; Mass-independent fractionation

1. INTRODUCTION

Mercury (Hg) is a globally distributed toxic element. Both geogenic processes and human activities liberate Hg from Earth’s lithosphere into the surface environment. Geogenic Hg is mainly released into the atmosphere in forms of volcanic and hydrothermal degassing (Pyle and Mather, 2003; Bagnato et al., 2014). From ~3000 BCE, humans started to increase Hg releases by silver/gold mining, fossil fuel combustion and non-ferrous metal smelting (Nriagu, 1979; Streets et al., 2011). Following releases, Hg cycles among atmospheric, terrestrial and oceanic reservoirs before ultimately being buried in marine sediments and returning to the lithosphere (Andren and Nriagu, 1979; Mason et al., 1994; Amos et al., 2014). Understanding the natural and anthropogenic Hg cycles is critical to quantify

* Corresponding authors.
E-mail addresses: ruoyu.sun@tju.edu.cn (R. Sun), jeroen.sonke@get.omp.eu (J.E. Sonke).

https://doi.org/10.1016/j.gca.2018.11.036
0016-7037/© 2018 Elsevier Ltd. All rights reserved.
the amounts of legacy Hg accumulated at the Earth’s surface, and to predict how Hg emission reduction policies (e.g., Mercury Minimata Convention) will affect Hg budgets in biogeochemical reservoirs (Amos et al., 2013, 2014). However, large uncertainties still exist for the global Hg cycle regarding the magnitude of numerous fluxes and transformations including atmospheric Hg0 oxidation and HgII reduction, Hg dry/wet deposition, and marine-atmospheric and terrestrial-atmospheric Hg0 exchange (Lindberg et al., 2007; Pongpueksa et al., 2008; Holmes et al., 2010; Streets et al., 2011; Engstrom et al., 2014; Obrist et al., 2014; Huang and Gustin, 2015; Agnan et al., 2016).

Mercury stable isotopes are a new tool to study Hg cycling at various spatiotemporal scales (Sonke, 2011; Hintelmann, 2012; Sonke and Blum, 2013; Blum et al., 2014; Yin et al., 2014). The seven Hg stable isotopes can be fractionated mass-dependently (MDF, indicated by δ^{202}Hg) and mass-independently (odd-MIF for odd mass number Hg isotopes indicated by Δ^{202}Hg or Δ^{200}Hg, and even-MIF for even mass number Hg isotopes indicated by Δ^{202}Hg or Δ^{200}Hg). MDF occurs during nearly all abiotic and biotic Hg transformations, and causes the separation between heavy and light Hg isotopes due to the differences in their nuclear masses and volumes (Blum et al., 2014; Yin et al., 2014). Odd-MIF occurs in specific processes that are selective to nuclear spin or nuclear volume, and causes the separation between even and odd mass number Hg isotopes due to the non-zero nuclear spins (magnetic isotope effect, MIE) (Buchachenko, 2001, 2009; Bergquist and Blum, 2007) or the nuclear size/shape distortion of odd mass number Hg isotopes (nuclear volume effect, NVE) (Schauble, 2007; Zheng and Hintelmann, 2010b; Ghosh et al., 2013). More than 10% variation in both MDF and odd-MIF are reported across the Earth’s reservoirs (Blum et al., 2014; Yin et al., 2014). Even-MIF is mainly observed in the atmosphere with more than 1% variation, but the underlying mechanisms are still unclear (Chen et al., 2012; Cai and Chen, 2015).

Physical, chemical and biological processes drive Hg mass transfer from one reservoir to another, and each process fractionates heavy/light and odd/even Hg isotopes along characteristic trajectories (Blum et al., 2014). The Hg mass transfer and Hg isotope fractionation processes result in biogeochemical reservoirs with distinct Hg isotope signatures. For example, the contrast δ^{202}Hg, Δ^{199}Hg, and Δ^{200}Hg signatures of atmospheric Hg0 and HgII lead to powerful applications in tracing HgII wet and Hg0 dry deposition pathways (Demers et al., 2013; Enrico et al., 2016; Obrist et al., 2017). Across the Arctic tundra, and the North American and European boreal and temperate forested ecosystems, Hg isotope signatures in soils show that Hg deposited through plant uptake of atmospheric Hg0 exceeds Hg originating from atmospheric HgII wet deposition by a factor 2-4 (Demers et al., 2013; Jiskra et al., 2015; Enrico et al., 2016; Zheng et al., 2016; Obrist et al., 2017). We have only yet begun to understand the consequences of such a paradigm shift. Enrico et al. (2016) argued that plant uptake lowers atmospheric Hg0 lifetime to 4 months. Enrico et al. (2017) used a peat archive to reconstruct the first millennial record of plant Hg0 uptake, and found Holocene Hg0 levels to be more than 10 times lower than maximum 20th century Hg0. Obrist et al. (2017) showed how tundra uptake of Hg0 has loaded tundra soils with vast amounts of Hg, that risk being mobilized into the Arctic Ocean by rivers as permafrost soils thaw. We are therefore at a turning point in Hg isotope science, where isotope signatures provide strong constraints and insights on some of the lesser known Hg fluxes and processes at the Earth’s surface.

Here we construct a global Hg isotope box model on the basis of the state-of-the-science global Hg chemistry and transport models (Amos et al., 2014; Zhang et al., 2015) where Hg sources and Hg mass transfer processes are complemented with Hg isotope signatures. The initial aim of this Hg isotope model is to examine if Hg isotope observations in atmospheric, terrestrial and oceanic reservoirs can be reproduced using current knowledge on the global Hg cycle, source Hg isotope signatures and Hg isotope fractionation processes. We then investigate how the observed Hg isotope compositions in the Earth’s reservoirs can be used to further constrain global Hg mass transfer processes.

2. METHODS

2.1. Hg isotope notations

The Hg isotope composition is expressed in delta notation $(\delta, \%e)$ by anchoring to a common NIST SRM 3133 Hg standard:

$$
\delta^{xxx}\text{Hg}(\%e) = \left(\frac{^{xxx}\text{Hg}^{198}\text{Hg}}{^{198}\text{Hg}^{198}\text{Hg}} \right)_{\text{sample}} / \left(\frac{^{xxx}\text{Hg}^{198}\text{Hg}}{^{198}\text{Hg}^{198}\text{Hg}} \right)_{\text{NIST3133}} - 1 \times 1000
$$

(1)

where the superscript XXX is Hg isotope mass number between 199 and 204, $(^{xxx}\text{Hg}^{198}\text{Hg})_{\text{sample}}$ is isotope ratio of the sample, and $(^{xxx}\text{Hg}^{198}\text{Hg})_{\text{NIST3133}}$ is the isotope ratio of the bracketing NIST SRM 3133 Hg standard. The Hg isotope MIF is expressed in capital delta notation $(\Delta, \%e)$, representing the difference between the measured ^{xxx}Hg and that predicted from ^{202}Hg using a kinetic MDF law (Blum and Bergquist, 2007):

$$
\Delta^{xxx}\text{Hg}(\%e) = \delta^{xxx}\text{Hg} - \delta^{202}\text{Hg} \times c^{xxx}\text{Hg}
$$

(2)

The mass dependent scaling factor $c^{xxx}\text{Hg}$ is 0.2520 for ^{199}Hg, 0.5024 for ^{200}Hg, 0.7520 for ^{201}Hg and 1.4930 for ^{202}Hg. In this study, we use $\delta^{202}\text{Hg}$, $\Delta^{199}\text{Hg}$ and $\Delta^{200}\text{Hg}$ as the tracers of MDF, odd-MIF and even-MIF, respectively.

The total Hg isotope fractionation factor (α) between reactant i (reservoir i) and product j (reservoir j) is defined as:

$$
\alpha^{xxx}\text{Hg}_{i\to j} = \frac{R^{xxx}\text{Hg}_{i}}{R^{xxx}\text{Hg}_{j}} = \frac{\left(\frac{^{xxx}\text{Hg}^{198}\text{Hg}}{^{198}\text{Hg}^{198}\text{Hg}} \right)_{i}}{\left(\frac{^{xxx}\text{Hg}^{198}\text{Hg}}{^{198}\text{Hg}^{198}\text{Hg}} \right)_{j}}
$$

(3)

and can be decomposed into MDF, odd-MIF and even-MIF components (Sonke, 2011):
$\alpha^{\text{xxx}}_{\text{Hg}}^{\text{TOT}(i-j)} = \alpha^{\text{xxx}}_{\text{Hg}}^{\text{MDF}(i-j)} \times \alpha^{\text{xxx}}_{\text{Hg}}^{\text{odd-MIF}(i-j)} \times \alpha^{\text{xxx}}_{\text{Hg}}^{\text{even-MIF}(i-j)}$ (4)

Both $\alpha^{202}_{\text{Hg}}^{\text{odd-MIF}}$ and $\alpha^{202}_{\text{Hg}}^{\text{even-MIF}}$ equal to 1 for $\alpha^{202}_{\text{Hg}}^{\text{TOT}}$; $\alpha^{199}_{\text{Hg}}^{\text{odd-MIF}}$ equals to 1 for $\alpha^{199}_{\text{Hg}}^{\text{TOT}}$; $\alpha^{200}_{\text{Hg}}^{\text{odd-MIF}}$ equals to 1 for $\alpha^{200}_{\text{Hg}}^{\text{TOT}}$. The Hg isotope enrichment factor expressed in epsilon notation (ε or E) is used to denote ‘permil fractionation factor’, which we use from here on:

$$\varepsilon^{202}_{\text{Hg}}(\%e) = 1000 \times \left(\frac{\alpha^{202}_{\text{Hg}}^{\text{MDF}} - 1}{1} \right)$$

$$E^{199}_{\text{Hg}}(\%e) = 1000 \times \left(\frac{\alpha^{199}_{\text{Hg}}^{\text{odd-MIF}} - 1}{1} \right)$$

$$E^{200}_{\text{Hg}}(\%e) = 1000 \times \left(\frac{\alpha^{200}_{\text{Hg}}^{\text{even-MIF}} - 1}{1} \right)$$

2.2. Model description

The basic structure of the global Hg isotope box model is based on the 7-box model of Amos et al. (2013, 2014) that is used to simulate global biogeochemical cycle of total Hg (THg). Here, we further separate the atmospheric THg box into gaseous elemental Hg (0 and oxidized Hg (II) (including aE199Hg). Here, we further separate the atmospheric THg box is used to simulate global biogeochemical cycle of total Hg isotopes.

The global Hg isotope box model comprises four basic components: rate coefficient k, geogenic/anthropogenic Hg input inventory S and its isotope composition S^{202}_{Hg} and S^{199}_{Hg}, and Hg isotope enrichment factor ε or E. The rate coefficients are calculated from present-day reservoir Hg sizes and Hg fluxes between reservoirs, based on the GEOS-Chem and MITEcm models (summarized in Table EA-1 and explained in the Electronic Annex). We use the same Hg input inventory as Amos et al. (2014), which includes geogenic (90 Mg/yr) and anthropogenic (2000 BCE to 2010 CE, cumulatively 460,000 Mg) Hg emissions into the atmosphere (Streets et al., 2011; Horowitz et al., 2014) and anthropogenic Hg discharges into the river (1850 CE-2010 CE, cumulatively 380,000 Mg) (Amos et al., 2014). The riverine Hg is then delivered to the surface ocean after partial burial in coastal margin sediments (Amos et al., 2014). Previous studies have evaluated the uncertainties of these Hg input inventories (Streets et al., 2011; Amos et al., 2014; Horowitz et al., 2014), and demonstrated that their use in the Hg cycling models could result in output compatible with observed Earth’s budgets and fluxes (Amos et al., 2013, 2014, 2015). The isotopic composition of Hg input inventory and Hg isotope enrichment factor are discussed below.

2.2.1. Isotope composition of Hg input inventory

The geogenic Hg emissions are derived from observations on volcanic plumes as summarized by Bagnato et al. (2011). Volcanic fumarole plume THg has a mean value of $\pm 0.76\%e \pm 0.11\%e (1\sigma)$ for S^{202}_{Hg} and of $0.05\%e \pm 0.03\%e (1\sigma)$ for S^{199}_{Hg} (Zambardi et al., 2009; Sun et al., 2016b). Thus, the geogenic Hg emissions are assumed to have a S^{202}_{Hg} value of $\pm 0.76\%e \pm 0.11\%e (1\sigma)$. The anthropogenic Hg emissions to the atmosphere are separated as gaseous Hg (I), gaseous Hg (II) and particulate-bound Hg (II).
and their Hg isotope compositions and associated uncertainties between 1850 and 2010 were estimated by Sun et al. (2016b) after correcting the isotope shifts during processing and combustion of anthropogenic source materials. Pre-1850 Hg emissions mostly originated from the intentional liquid Hg₀ use in silver production (58%) and Hg ore mining (30%) around the 16th–18th centuries in South/Central America (Streets et al., 2011). We assume these emissions to be near-quantitative and in the gaseous Hg₀ form, and should therefore conserve the Hg isotope signatures of source materials. According to anthropogenic Hg emission budgets of individual sectors before 1850 and their source material Hg isotope compositions, we estimate a median value of $^{202}\Delta Hg = 0.91\, \text{‰}$ (from $^{1.49}\text{‰}$ to $^{0.49}\text{‰}$ at 80% confidence level) for $\delta^{202}\text{Hg}$ and of $\Delta^{199}\text{Hg} = 0.01\, \text{‰}$ (from $-0.04\, \text{‰}$ to $0.04\, \text{‰}$ at 80% confidence level) for $\Delta^{199}\text{Hg}$, following Sun et al. (2016b). Since modern rivers mainly receive effluent Hg from industrial sectors that intentionally use liquid Hg₀ (Amos et al., 2014; Horowitz et al., 2014; Wiederhold et al., 2015), the direct anthropogenic Hg discharges into rivers are assumed to have the Hg isotope composition of commercial liquid Hg₀ ($\delta^{202}\text{Hg} = -0.49\, \text{‰} \pm 0.40\%e$, $\Delta^{199}\text{Hg} = 0.01\, \text{‰} \pm 0.05\%e$, 1σ) (Blum and Bergquist, 2007; Sonke et al., 2008; Estrade et al., 2009; Foucher et al., 2009; Laffont et al., 2011; Gray et al., 2013; Mead et al., 2013; Ruabiart et al., 2016). As geogenic emissions and riverine discharges have very small $\Delta^{199}\text{Hg}$ values, within the typical measurement uncertainty ($\pm 0.05\%e$ to $\pm 0.10\%e$), we assume that they have no odd-MIF anomalies (i.e. $\Delta^{199}\text{Hg} = 0.00\%e$). Following Sun et al. (2016b), we assume that geogenic and anthropogenic Hg sources have no even-MIF anomalies (i.e. $\Delta^{200}\text{Hg} = 0.00\%e$).

2.2.2 Isotope enrichment factor

The Hg isotope enrichment factors in the model are derived from laboratory-controlled experiments where possible, or empirically estimated from the literature, or unknown. Table EA-2 lists the experimental enrichment factors for MDF ($\epsilon^{202}\text{Hg}$) and odd-MIF ($\epsilon^{199}\text{Hg}$) during physical, chemical and biological transformation of inorganic Hg. We note that these enrichment factors were obtained under controlled laboratory conditions and their extrapolation to the natural environment is associated with large uncertainties. In the following, we discuss the experimental conditions under which enrichment factors were determined and the rationale for the selection of specific literature values for the MDF and odd-MIF ‘standard model’ simulation in Tables 1 and 2. A small amount of even-MIF ($\epsilon^{200}\text{Hg}_{\text{atm}}(0-II) = 0.06\, \text{‰} \pm 0.01\%e$, 1σ) was only observed in the photochemical reaction of Hg₀ + Br/Cl (Sun et al., 2016a). Thus, we use a value of 0.05‰ for $\epsilon^{200}\text{Hg}_{\text{atm}}(0-II)$ in even-MIF ‘standard model’ simulation (Table 3).

2.2.2.1 Oxidation of gaseous Hg₀. Gaseous Hg₀ photo-oxidation experiments under normal atmospheric condition (25°C, 750 Torr) showed that the reaction of Hg₀ + Br induced both MDF and odd-MIF. The reactant Hg₀ became progressively enriched in the light ($\epsilon^{202}\text{Hg} = 0.74\%e \pm 0.07$, 1σ) and odd Hg isotopes...
Cl was also studied by Sun et al. (2016a), and was found to induce MDF (e and Hg 0 + Br pathways question their relevance for inter-
tant Hg 0 became enriched in the heavy and odd Hg isotopes, but also depleted in the even Hg isotopes. However, the odd-MIF of Hg 0 + Cl showed a Δ199Hg/Δ201Hg slope of 1.9, which is significantly higher than the slopes known for experimental MIE (1.0–1.3) (Bergquist and Blum, 2007; Zheng and Hintelmann, 2009) and NVE (≈1.6) (Estrade et al., 2009; Ghosh et al., 2013). Both unusual observations on Hg isotope fractionation by Hg 0 + Cl and Hg 0 + Br pathways question their relevance for interpreting natural observations. Atmospheric Hg 0 photo-oxidation pathways are currently not well understood as the Hg 0 products have not been identified. Current global Hg models however suggest that Br rather than Cl radicals are the main oxidants (Holmes et al., 2010; Horowitz et al., 2017). Therefore, our standard model uses MDF and odd-MIF enrichment factors associated with atmospheric Hg 0 photo-oxidation via the Hg 0 + Br pathway from Sun et al., 2016a. As shown in Horowitz et al. (2007), the Hg 0 + Br pathway has a second oxidation step that may involve NO 2 and HO 2. However, we don’t know any Hg isotope enrichment factors for this step, implying that the used enrichment factor for Hg 0 + Br pathway in our model has a large uncertainty.

Table 1: Observed and simulated δ202Hg (%) in the Earth’s reservoirs by standard and fitted MDF box models (the fitted enrichment factors are shown in bold).

<table>
<thead>
<tr>
<th>Enrichment factor (%)</th>
<th>Observed mean ± 1SD</th>
<th>Model simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>e202Hg atm (o-11)</td>
<td>-1.02 ± 0.65</td>
<td>-1.11</td>
</tr>
<tr>
<td>e202Hg ocean (o-11)</td>
<td>-2.06 ± 0.48</td>
<td>-1.75</td>
</tr>
<tr>
<td>e202Hg soil</td>
<td>-1.11 ± 0.43</td>
<td>-1.22</td>
</tr>
<tr>
<td>Hg 0 atm</td>
<td>0.26 ± 0.40</td>
<td>-0.40</td>
</tr>
<tr>
<td>Hg 0 ocean</td>
<td>-0.23 ± 0.31</td>
<td>-0.31</td>
</tr>
<tr>
<td>Hg 0 soil</td>
<td>0.57 ± 0.49</td>
<td>0.49</td>
</tr>
<tr>
<td>Hg 0 atm</td>
<td>-0.13 ± 0.18</td>
<td>-0.18</td>
</tr>
<tr>
<td>Hg 0 ocean</td>
<td>-0.52 ± 0.59</td>
<td>-0.59</td>
</tr>
<tr>
<td>Hg 0 soil</td>
<td>0.27 ± 0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>Hg 0 atm</td>
<td>-0.15 ± 0.15</td>
<td>-0.21</td>
</tr>
<tr>
<td>Hg 0 ocean</td>
<td>-0.42 ± 0.42</td>
<td>-0.50</td>
</tr>
<tr>
<td>Hg 0 soil</td>
<td>0.16 ± 0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>Hg 0 atm</td>
<td>0.15 ± 0.15</td>
<td>-0.21</td>
</tr>
</tbody>
</table>

* Median value of all-time anthropogenic Hg emissions to the atmosphere from 2000 BCE to 2010.

b Observed value is represented by foliage/litter (−2.56‰ ± 0.64‰) and organic surface soils (−1.79‰ ± 0.45‰).

c Observed value is represented by mineral soils (−1.39‰ ± 0.43‰).
depending on the bacterial species and substrate Hg II concentrations (Kritee et al., 2007, 2008). We assume that the enrichment factors reported for Hg II-DOM photo-reduction experiments of Hg II-DOM indicated that the enrichment factors (E199Hg = 1.02 ± 0.02‰) associated with photo-reduction most likely depletes odd isotopes in terrestrial reservoirs. Terrestrial Hg is mainly bound to S-SH (thiol) ligands of organic matter in soils and in forms of thiolate complex (Hg(SR)₂) or Hg-S nanoparticulate in plant leaves (Skyllberg et al., 2006; Manceau et al., 2018). Zheng and Hintelmann (2010a) showed that the photo-reduction of Hg II bound to low molecular weight -SH ligands is associated with a depletion of odd Hg isotopes in the reactant Hg II. The enrichment factors (E202Hg = −1.32 ± 0.04‰; E199Hg = −2.75 ± 0.14‰, 1σ) associated with photo-reduction of Hg II bound to cysteine (~SH) from Zheng and Hintelmann (2010a) are extrapolated to terrestrial Hg II photo-reduction based on their similar Hg bonding environments. Additionally, a previous Hg isotope MIF model by Sonke (2011) also suggested that soil Hg II photo-reduction most likely depletes odd isotopes in terrestrial reservoir, and gave a best-fitted E199Hg of 1.4‰. Nevertheless, we have no experimental evidences for photochemical MIF occurring in upper soils. Following Jiskra et al. (2015), the enrichment factors (E202Hg = −1.52 ± 0.03‰; E199Hg = 0.18 ± 0.03‰, 1σ) determined by Zheng and Hintelmann (2010b) are used for non-photochemical reduction of terrestrial Hg II.

Table 2

<table>
<thead>
<tr>
<th>Enrichment factor (%)</th>
<th>Observed mean ± 1SD</th>
<th>Model simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Standard #1 #2</td>
</tr>
<tr>
<td>E199Hgatm (0-II) (atmospheric Hg 0 oxidation, photo-)</td>
<td>−0.25</td>
<td>0.00</td>
</tr>
<tr>
<td>HgII</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>E199Hgocean (0-II) (marine Hg 0 reduction, photo-)</td>
<td>−2.70</td>
<td>1.75</td>
</tr>
<tr>
<td>E199Hgfjord (II-0) (terrestrial Hg II reduction, photo-)</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>E199Hgocean (II-0) (marine Hg II reduction, photo-)</td>
<td>0.20</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Source δ199Hg (%e) input

Natural emissions

Anthropogenic emissions

Anthropogenic river discharges

δ199Hg (%e) in modern Earth’s reservoirs

Hg0,1|−0.11 ± 0.12|−1.67|−0.11|−0.11
HgII,2|0.39 ± 0.28|−0.58|0.41|0.40
Hg0,3|−1.27|0.05|−0.30
HgII,4|−0.25 ± 0.14|−0.92|0.20|−0.24
Hg0,5|−0.32|0.37|0.30
HgII,6|−1.46|0.33|0.18
Hg0,7|1.23|−0.21|0.18
HgII,8|0.90|−0.16|0.12
Hg0,9|−1.12|0.25|0.15
HgII,10|1.53|−0.28|0.15
Hg0,11|1.04|−0.19|0.13
HgII,12|−0.31|0.10|0.17
Hg0,13|1.35|−0.24|0.16
HgII,14|1.04|−0.19|0.13

a Median value of all-time anthropogenic Hg emissions to the atmosphere from 2000 BCE to 2010.
b Observed value is represented by foliage/litter (−0.31% ± 0.13‰) and organic surface soils (−0.25% ± 0.14‰).
c Observed value is represented by mineral soils (−0.25% ± 0.14‰).
Table 3
Observed and simulated $\Delta^{202}\text{Hg}$ (%e) in the Earth’s reservoirs by standard and fitted even-MIF models (the fitted rate coefficients are shown in bold).

<table>
<thead>
<tr>
<th>Enrichment factor (%e)</th>
<th>Observed mean ± 1SD</th>
<th>Model simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source $\Delta^{202}\text{Hg}$ (%e) input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural emissions</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Anthropogenic emissions</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Anthropogenic river discharges</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Hg mass transfer rate coefficient (yr$^{-1}$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\times k_{\text{atm}}$ (0-II) (atmospheric Hg0 oxidation, photo-)</td>
<td>1 1 1 1</td>
<td></td>
</tr>
<tr>
<td>$\times k_{\text{atm}}$ (II-0) (atmospheric Hg0 reduction, photo-)</td>
<td>1 1 12 6</td>
<td></td>
</tr>
<tr>
<td>$\times k_{\text{ter}}$ (II-0) (terrestrial Hg0 emission)</td>
<td>1 1 1 1</td>
<td></td>
</tr>
<tr>
<td>$\times k_{\text{atm-ter}}$ (atmospheric Hg0 dry deposition, foliar uptake)</td>
<td>1 1 1 2.5</td>
<td></td>
</tr>
</tbody>
</table>

$\Delta^{202}\text{Hg}$ (%e) in modern Earth’s reservoirs

Hg$^0_{\text{atm}}$	-0.04 ± 0.05	-0.03	-0.13	-0.04	-0.04
Hg$^0_{\text{atm}}$	0.17 ± 0.08	0.02	0.08	0.17	0.16
Hg$^0_{\text{atm}}$	-0.01	-0.04	-0.02	-0.02	-0.02
Hg$^0_{\text{atm}}$	0.02 ± 0.04	0.00	0.02	0.01	0.00
Hg$^0_{\text{atm}}$	0.02	0.09	0.13	0.12	
Hg$^0_{\text{atm}}$	0.00	0.01	0.01	0.03	
Hg$^0_{\text{atm}}$	0.00	0.01	0.01	0.03	
Hg$^0_{\text{atm}}$	0.00	0.01	0.01	0.02	
Hg$^0_{\text{atm}}$	0.00	0.01	0.01	0.02	
Hg$^0_{\text{atm}}$	0.00	0.01	0.01	0.02	
Hg$^0_{\text{atm}}$	0.00	0.01	0.01	0.02	
Hg$^0_{\text{atm}}$	0.00	0.01	0.01	0.02	
Hg$^0_{\text{atm}}$	0.00	0.01	0.01	0.02	
Hg$^0_{\text{atm}}$	0.00	0.01	0.01	0.02	
Hg$^0_{\text{atm}}$	0.00	0.01	0.01	0.02	
Hg$^0_{\text{atm}}$	0.00	0.01	0.01	0.02	
Hg$^0_{\text{atm}}$	0.00	0.01	0.01	0.02	
Hg$^0_{\text{atm}}$	0.00	0.01	0.01	0.02	
Hg$^0_{\text{atm}}$	0.00	0.01	0.01	0.02	

a Observed value is represented by foliage/litter ($-0.01%e \pm 0.05%e$) and organic surface soils ($-0.01%e \pm 0.03%e$).

2.2.2.3. Sorption of dissolved HgII onto particles. The dissolved HgII sorption was shown to associate with an enrichment in light Hg isotopes by $-0.30%e \pm 0.04%e$ (1σ) to $-0.44%e \pm 0.04%e$ (1σ) to the mineral surfaces (Jiskra et al., 2012), and $-0.53%e \pm 0.08%e$ (1σ) to $-0.62%e \pm 0.09%e$ (1σ) to the -SH ligands (Wiederhold et al., 2010) in $\delta^{202}\text{Hg}$. Insignificant to small odd-MIF (<0.1%e in $\Delta^{199}\text{Hg}$) was also observed for both HgII sorption experiments. We therefore chose a value of $-0.50%e$ for $\delta^{202}\text{Hg}$ and of 0.00%e for $\epsilon^{202}\text{Hg}$ for the partitioning of marine dissolved HgII to Hg0.

2.2.2.4. Evasion of dissolved gaseous Hg0. The laboratory-controlled experiments showed that volatilization of dissolved Hg0 from solution into the atmosphere enriches the light Hg isotopes in product gaseous Hg0, with reported $\epsilon^{202}\text{Hg}$ values of $-0.44%e \pm 0.02%e$ (1σ) and $-0.47%e \pm 0.01%e$ (1σ) (Zheng et al., 2007). No odd-MIF was observed during this experiment. Here, we use a value of $-0.45%e$ to represent the $\epsilon^{202}\text{Hg}$ associated with dissolved Hg0 evasion from the surface ocean.

2.2.2.5. Plant uptake of atmospheric Hg0. Enrico et al. (2016) estimated an empirical $\epsilon^{202}\text{Hg}$ of $-2.6%e$ for foliar Hg0 uptake based on the difference in Hg concentrations and $\delta^{202}\text{Hg}$ values of atmospheric Hg0 between a peatland and the adjacent open mountain. This value agrees well with the $\delta^{202}\text{Hg}$ difference ($-3%e$ to $-2%e$) between atmospheric gaseous Hg (primarily Hg0) and co-located plant leaves reported in most studies (Demers et al., 2013; Yin et al., 2013; Enrico et al., 2016; Yu et al., 2016; Obrist et al., 2017). Here, the value of $-2.6%e$ for foliar Hg0 uptake is used for atmospheric Hg0 dry deposition, following the notation that vegetation uptake is the dominant dry deposition pathway over terrestrial surfaces (Jiskra et al., 2018). Up to 0.3%e negative shift in $\Delta^{199}\text{Hg}$ was observed in plant leaves relative to atmospheric Hg0 (Demers et al., 2013; Yu et al., 2016; Zheng et al., 2016), which was interpreted as photo-reduction of Hg0 bound to sbndSH on foliage (Demers et al., 2013) and parameterized in the model as discussed above. A similar offset in $\Delta^{199}\text{Hg}$ was also observed during photo-microbial reduction of algal intracellular Hg0 (Kritee et al., 2018).

3. OVERVIEW OF HG ISOTOPE COMPOSITIONS IN EARTH’S RESERVOIRS

To compare simulated Hg isotope compositions by the Hg isotope box model with observations, we established a database of Hg isotope compositions measured in Earth’s
Due to difficulty in the separation of gaseous Hg\(_0\) from gaseous Hg\(^{II}\) during atmospheric Hg species sampling, they are commonly collected together as total gaseous Hg. The bulk Hg isotope composition of total gaseous Hg is usually used to represent that of elemental Hg\(_{0}\) due to the small fraction of gaseous Hg\(^{II}\) (<5\%) in the atmospheric boundary layer (Gratz et al., 2010; Sherman et al., 2010; Demers et al., 2013, 2015; Enrico et al., 2016; Fu et al., 2016; Yu et al., 2016; Xu et al., 2017). The background levels of gaseous Hg\(^{II}\) and particulate-bound Hg\(^{P}\) are too low to precisely measure their isotope compositions. Wet deposition (rain or snow) scavenges both water-soluble gaseous Hg\(^{I}\) and particulate-bound Hg\(^{P}\) (Keeler et al., 1995; Lindberg and Stratton, 1998; Yuan et al., 2018). We assume that the Hg isotope composition in wet deposition (Gratz et al., 2010; Chen et al., 2012; Sherman et al., 2012, 2015; Demers et al., 2013; Donovan et al., 2013; Wang et al., 2015; Yuan et al., 2015; Enrico et al., 2016) is representative for atmospheric oxidized Hg\(_{0}\) comprised of gaseous and particulate forms in the model.

As shown in Fig. 2A–B, Hg\(_{0}\) in the atmosphere is ~0.5‰ higher than Hg\(^{II}\) in the atmosphere (0.10‰ ± 0.65‰ vs. –0.41‰ ± 0.48‰, 1σ), but is ~0.5‰ lower than Hg\(_{0}\) in the terrestrial reservoir (–0.11‰ ± 0.12‰ vs. 0.39‰ ± 0.28‰, 1σ). Significant and positive Δ\(^{202}\)Hg observed in Hg\(_{0}\) (0.17‰ ± 0.08‰, 1σ) is balanced by the small and negative Δ\(^{202}\)Hg in Hg\(^{II}\) (–0.04 ± 0.05‰, 1σ) (Fig. 2C). Significant Hg isotope differences are observed between Hg\(_{0}\) samples collected from rural sites in Europe/North America and mostly urban-industrials in China. Hg\(_{0}\) in Europe/North America (\(^{30}\)Hg = 0.61‰ ± 0.44‰; Δ\(^{199}\)Hg = –0.20‰ ± 0.08‰, \(^{202}\)Hg = –0.07‰ ± 0.05‰, 1σ, n = 98) (Gratz et al., 2010; Sherman et al., 2010; Demers et al., 2013, 2015; Enrico et al., 2016; Fu et al., 2016) is more enriched in heavy and depleted in odd Hg isotopes than China (\(^{30}\)Hg = –0.30‰ ± 0.48‰; Δ\(^{199}\)Hg = –0.04‰ ± 0.09‰, \(^{202}\)Hg = –0.01‰ ± 0.03‰, 1σ, n = 122) (Yu et al., 2016; Xu et al., 2017). This difference may be explained by a higher contribution of Hg from primary anthropogenic sources in the Chinese samples, reflected also in higher Hg concentrations in China compared to Europe/North America. The regional differences are not considered in our global Hg box model.

3.2. Terrestrial reservoir

We compiled Hg isotope compositions reported in forest ecosystem including foliage, litter, organic and mineral soil (Demers et al., 2013; Zhang et al., 2013; Jiskra et al., 2015; Enrico et al., 2016; Wang et al., 2017; Yu et al., 2016; Zheng et al., 2016). \(^{302}\)Hg in the terrestrial reservoir increases significantly from foliage/litter (–2.56‰ ± 0.64‰, 1σ, Rod (Sˇtrok et al., 2014, 2015). Samples with extreme \(\delta^{202}\)Hg or \(\Delta^{199}\)Hg or \(\Delta^{200}\)Hg were removed based on statistical outlier analysis where their values higher than 3rd quartile + 1.5 × IQR (the interquartile range) or lower than 1st quartile - 1.5 × IQR are deemed as outliers.

3.1. Atmosphere

Due to difficulty in the separation of gaseous Hg\(_0\) from gaseous Hg\(^{II}\) during atmospheric Hg species sampling, they are commonly collected together as total gaseous Hg. The bulk Hg isotope composition of total gaseous Hg is usually used to represent that of elemental Hg\(_{0}\) due to the small fraction of gaseous Hg\(^{II}\) (<5\%) in the atmospheric boundary layer (Gratz et al., 2010; Sherman et al., 2010; Demers et al., 2013, 2015; Enrico et al., 2016; Fu et al., 2016; Yu et al., 2016; Xu et al., 2017). The background levels of gaseous Hg\(^{II}\) and particulate-bound Hg\(^{P}\) are too low to precisely measure their isotope compositions. Wet deposition (rain or snow) scavenges both water-soluble gaseous Hg\(^{I}\) and particulate-bound Hg\(^{P}\) (Keeler et al., 1995; Lindberg and Stratton, 1998; Yuan et al., 2018). We assume that the Hg isotope composition in wet deposition (Gratz et al., 2010; Chen et al., 2012; Sherman et al., 2012, 2015; Demers et al., 2013; Donovan et al., 2013; Wang et al., 2015; Yuan et al., 2015; Enrico et al., 2016) is representative for atmospheric oxidized Hg\(_{0}\) comprised of gaseous and particulate forms in the model.

As shown in Fig. 2A–B, Hg\(_{0}\) in the atmosphere is ~0.5‰ higher than Hg\(^{II}\) in the atmosphere (0.10‰ ± 0.65‰ vs. –0.41‰ ± 0.48‰, 1σ), but is ~0.5‰ lower than Hg\(_{0}\) in the terrestrial reservoir (–0.11‰ ± 0.12‰ vs. 0.39‰ ± 0.28‰, 1σ). Significant and positive Δ\(^{202}\)Hg observed in Hg\(_{0}\) (0.17‰ ± 0.08‰, 1σ) is balanced by the small and negative Δ\(^{202}\)Hg in Hg\(^{II}\) (–0.04 ± 0.05‰, 1σ) (Fig. 2C). Significant Hg isotope differences are observed between Hg\(_{0}\) samples collected from rural sites in Europe/North America and mostly urban-industrials in China. Hg\(_{0}\) in Europe/North America (\(^{30}\)Hg = 0.61‰ ± 0.44‰; Δ\(^{199}\)Hg = –0.20‰ ± 0.08‰, \(^{202}\)Hg = –0.07‰ ± 0.05‰, 1σ, n = 98) (Gratz et al., 2010; Sherman et al., 2010; Demers et al., 2013, 2015; Enrico et al., 2016; Fu et al., 2016) is more enriched in heavy and depleted in odd Hg isotopes than China (\(^{30}\)Hg = –0.30‰ ± 0.48‰; Δ\(^{199}\)Hg = –0.04‰ ± 0.09‰, \(^{202}\)Hg = –0.01‰ ± 0.03‰, 1σ, n = 122) (Yu et al., 2016; Xu et al., 2017). This difference may be explained by a higher contribution of Hg from primary anthropogenic sources in the Chinese samples, reflected also in higher Hg concentrations in China compared to Europe/North America. The regional differences are not considered in our global Hg box model.
n = 156) to organic surface soils (–1.79‰ ± 0.45‰, 1σ, n = 85) and to mineral soil (–1.39‰ ± 0.43‰, 1σ, n = 50) (Fig. 2A). Δ²⁰²Hg only shows a small increase from foliage/litter (–0.31‰ ± 0.13‰, 1σ, n = 156) to organic surface soil (–0.25‰ ± 0.14‰, 1σ, n = 85) and mineral soil (–0.25‰ ± 0.14‰, 1σ, n = 50) (Fig. 2B). No significant anomalies in Δ²⁰⁰Hg were observed for the terrestrial reservoirs (Fig. 2C). Foliage and litters collected in China (Δ²⁰²Hg = –2.95‰ ± 0.36‰; Δ¹⁹⁹Hg = –0.34‰ ± 0.12‰, 1σ, n = 57) (Yu et al., 2016; Wang et al., 2017) are also significantly different from those collected in Europe/North America (Δ²⁰²Hg = –1.89‰ ± 0.44‰; Δ¹⁹⁹Hg = –0.25‰ ± 0.12‰, 1σ, n = 99) (Demers et al., 2013; Zhang et al., 2013; Jiskra et al., 2015; Enrico et al., 2016; Zheng et al., 2015). Thus, foliage/litter is likely biased towards low mean Δ²⁰²Hg value, because the database contains >60% of Chinese samples that are characterized by very negative Δ²⁰²Hg.

3.3. Ocean

Low Hg levels in ocean waters make measurements of Hg isotope ratios very challenging and therefore only limited data exist. strok et al. (2014) reported the first analyses of coastal seawater samples, and showed that Δ²⁰²Hg varies from –1.5‰ to –0.5‰ with small, positive Δ¹⁹⁹Hg (–0.01‰ to 0.14‰) and Δ²⁰⁰Hg (0.05–0.53‰). A further study by strok et al. (2015) showed that the coastal filtered seawater near the Canadian Arctic Archipelago had more negative Δ²⁰²Hg (–2.85‰ to –1.10‰), and also positive Δ¹⁹⁹Hg (0.17–0.29‰) and Δ²⁰⁰Hg (0.05–0.52‰). Dissolved HgII is the primary Hg pool in the ocean, and is likely the main Hg form in these reported seawater samples (Lamborg et al., 2014; Zhang et al., 2014). Up until now, Hg isotope data for open ocean waters are not reported. Blum et al. (2013) proposed that the dissolved HgHII in the open Pacific Ocean likely had small positive Δ²⁰²Hg and Δ¹⁹⁹Hg, similar to the Pacific coastal rainwater (Δ²⁰²Hg = 0–0.2‰; Δ¹⁹⁹Hg = 0.25–0.35‰) (Sherman et al., 2012; Donovan et al., 2013). It is noted that seawater in coastal and shelf areas might be significantly affected by Hg inputs from terrestrial reservoirs, while the open ocean mainly receives Hg from atmospheric deposition (Holmes et al., 2010; Amos et al., 2014).

Therefore, based on the availability of Hg stable isotope measurements, we consider the Hg isotope composition of the atmospheric reservoir as the primary observational constraint followed by the terrestrial reservoir. The Hg isotope composition of the oceanic reservoir is used as the least well-known constraint. In the following, the simulated results of the models are first compared against the Hg isotope composition of atmospheric reservoir followed by those of terrestrial and oceanic reservoirs.

4. MODELLING RESULTS AND EVALUATION

The Hg isotope box model simulation is first run for MDF, odd-MIF and even-MIF until natural steady-state in both Hg masses (i.e. dM/dt = 0) and Hg isotope compositions (i.e. d(Δ²⁰²Hg)/dt = 0, d(Δ¹⁹⁹Hg)/dt = 0 and d(Δ²⁰⁰Hg)/dt = 0) of all reservoirs. The initial spin-up uses geogenic Hg emissions to the atmosphere only (S = 90 Mg a⁻¹) with a constant Hg isotope composition (Δ²⁰²Hg = –0.76‰; Δ¹⁹⁹Hg = 0.00‰; Δ²⁰⁰Hg = 0.00‰). Then, following Amos et al. (2014), the reservoir Hg masses and Hg isotope compositions in natural steady-state are used as the initial conditions for the standard model run from 2000 BCE until present (2010). In the standard model all-time anthropogenic Hg emissions to the atmosphere are introduced with a time-dependent Hg isotope composition (1850–2010: data from Sun et al. (2016a); pre-1850: Δ²⁰²Hg = –0.91‰; Δ¹⁹⁹Hg = 0.00‰; Δ²⁰⁰Hg = 0.00‰) and direct anthropogenic Hg discharges into rivers with a constant Hg isotope composition (Δ²⁰²Hg = –0.49‰; Δ¹⁹⁹Hg = 0.00‰; Δ²⁰⁰Hg = 0.00‰) (Tables 1–3). The simulated Hg budgets and isotope compositions of environmental reservoirs (boxes) are not at steady-state due to human perturbations since 2000 BCE.

Table EA-3 lists the simulated Hg sizes in various reservoirs under natural steady-state and in 1850 and 2010. The simulated present-day (2010) Hg size is 5500 Mg for atmosphere, 12,300 Mg (i.e. 1.14 pM) for the upper ocean (surface and intermediate ocean) and 250,000 Mg for the terrestrial soils. The atmospheric Hg deposition in modern days (1990–2010) is elevated by a factor of 3.8 relative to the pre-industrial period (1760–1880). These data are comparable to those derived from contemporary measurements and various models (atmosphere: 4600–5600 Mg; upper ocean: 0.5–2.0 pM; terrestrial soils: >200,000; pre-industrial Hg enrichment factor: 2–5) (Lamborg et al., 2002; Biester et al., 2007; Sunderland and Mason, 2007; Selin et al., 2008; Mason et al., 2012; Amos et al., 2013, 2014; Hararuk et al., 2013; Horowitz et al., 2014; Lamborg et al., 2014; Zhang et al., 2014; Bowman et al., 2015; Horowitz et al., 2017).

Fig. 3 shows that the simulated modern-day δ²⁰²Hg and Δ¹⁹⁹Hg values in the atmospheric, terrestrial and oceanic reservoirs are very different from their observed isotope compositions. For example, the standard model predicts that δ²⁰²Hg values of HgHII are more than 1‰ higher than HgHII atm, which is contrary to the observations of higher δ²⁰²Hg values of gaseous HgHII atm compared to wet deposition (Table 1). The simulated atmospheric and terrestrial Δ¹⁹⁹Hg values are underestimated by over 1‰ compared to their observed values (Table 2). The simulated Δ²⁰⁰Hg values are too small to explain the observed large Δ²⁰⁰Hg in the wet deposition (Table 3). Thus, it appears that the direct use of experimentally determined Hg isotope enrichment factors is unrealistic or some key Hg isotope enrichment factors are missing in the standard Hg isotope model. To a lesser extent, the uncertainties in source Hg isotope compositions and Hg mass transfer processes in our Hg cycling box model also potentially bias the simulated output.

5. DISCUSSION ON HG ISOTOPE BOX MODEL

In the following, we first discuss how the source Hg isotope uncertainties affect the simulated Hg isotope compositions. Then, we test the sensitivity of simulated Hg isotope
compositions to Hg isotope enrichment factors, with the aim of finding the best-fitted enrichment factors that reproduce the observed Hg isotope compositions. Lastly, we examine the sensitivity of simulated Hg isotope compositions to some key but controversial Hg mass transfer processes.

5.1. Uncertainties in source Hg isotope compositions

The Hg input inventory for the Hg isotope model include three categories: geogenic Hg emissions to the atmosphere, all-time anthropogenic Hg emissions to the atmosphere and anthropogenic Hg discharges to rivers and ultimately oceans. \(\Delta^{199}\text{Hg} \) and \(\Delta^{200}\text{Hg} \) values in all these sources are very small, and are generally around zero within the measurement uncertainty (±0.10‰). Setting \(\Delta^{199}\text{Hg} \) and \(\Delta^{200}\text{Hg} \) values of all-time anthropogenic Hg emissions as zeros has no significant effect (<0.03‰ increase) on the simulated \(\Delta^{199}\text{Hg} \) in all the Earth’s reservoirs. Thus, we only discuss the model sensitivity to the uncertainties of source \(\Delta^{200}\text{Hg} \) values.

Due to the large amount of anthropogenic Hg released, any uncertainty in geogenic \(\Delta^{200}\text{Hg} \) only has a very little effect on the modern reservoir \(\delta^{200}\text{Hg} \) values. Varying geogenic \(\Delta^{200}\text{Hg} \) by 1‰ only changes <0.1‰ in the modern \(\delta^{200}\text{Hg} \) values of reservoirs except for the armored terrestrial reservoir and deep ocean. Similarly, the simulated reservoir \(\delta^{200}\text{Hg} \) values are also insensitive to the \(\delta^{200}\text{Hg} \) variation in anthropogenic Hg discharges to rivers from 1850 to 2010. This is because >90% of riverine Hg exists as Hg\(^0\) of which ~70% is thought to be buried in the shelf and coastal areas before entering into open ocean (Amos et al., 2014; Zhang et al., 2015). Varying the \(\delta^{202}\text{Hg} \) values of anthropogenic riverine discharges between mean (−0.5‰) and mean−1σ (−0.9‰) or mean +1σ (−0.1‰) only slightly changes modern reservoir \(\delta^{202}\text{Hg} \) values (<0.1‰ for atmospheric and terrestrial reservoirs; 0.10–0.15‰ for oceanic reservoirs). In contrast, the simulated reservoir \(\delta^{202}\text{Hg} \) values are very sensitive to the \(\delta^{202}\text{Hg} \) variation in all-time anthropogenic Hg emissions. The use of the lower (P10) or upper (P90) boundary \(\delta^{202}\text{Hg} \) values (Sun et al., 2016b) changes the modern reservoir \(\delta^{202}\text{Hg} \) values by 0.12–0.27‰. Taken together, the \(\delta^{202}\text{Hg} \) uncertainties of Hg release sources may account for up to 0.5‰ variation in \(\delta^{202}\text{Hg} \) values of modern Earth’s reservoirs.

5.2. Fitting of Hg isotope enrichment factors

The fitting of Hg isotope enrichment factors adopts the following steps on basis of the observational constraints as discussed in Section 3. (1) The enrichment factors associated with atmospheric redox processes are initially fitted to reproduce the relative difference of observed Hg isotope compositions between Hg\(^{atm}\) and Hg\(^{anthro}\). (2) The enrichment factors associated with terrestrial and oceanic redox processes are then fitted to match the absolute values of observed Hg isotope compositions of Hg\(^{atm}\) and Hg\(^{anthro}\). (3) The simulated Hg isotope compositions of terrestrial and upper oceanic Hg\(^{II}\) are compared with their observed values to find the optimized combination of enrichment factors. Model fitting runs are indicated as ‘model #1-x’ in contrast with the ‘standard model’ that is only based on published enrichments factors (Tables 1–3).

5.2.1. Mass dependent fractionation (MDF) model

In the standard MDF model, both photo-reduction of Hg\(^{atm}\) and photo-oxidation of Hg\(^{anthro}\) enrich heavy Hg isotopes in Hg\(^{atm}\), causing \(\delta^{202}\text{Hg}^{atm} \) to be significantly higher than \(\delta^{202}\text{Hg}^{anthro} \). This is contrary to observed \(\delta^{202}\text{Hg} \) in the atmosphere where \(\delta^{202}\text{Hg}^{atm} \) exceeds \(\delta^{202}\text{Hg}^{anthro} \) by ~0.5‰ (Fig. 3). Here, we optimize photo-oxidation \(\varepsilon^{202}\text{Hg}^{atm} \) (0.1I) to enrich the light Hg isotopes in the product Hg\(^{II}\) which would be coherent with kinetic isotope fractionation theory (i.e. light isotopes are preferably enriched in products) (Hoeft, 2015; Wiederhold, 2015). We find that a value of ~0.8% for \(\varepsilon^{202}\text{Hg}^{atm} \) results in ~0.5‰ relative difference between the simulated \(\delta^{202}\text{Hg}^{atm} \) (~0.1‰) and \(\delta^{202}\text{Hg}^{anthro} \) (~0.6‰) (MDF model #1 in Table 1). This suggests that the photo-oxidation \(\varepsilon^{202}\text{Hg}^{atm} \) (0.1I) based on the Hg\(^{0} + \text{Br} \) pathway in Sun et al. (2016a) used in the standard MDF model (discussed in section 2.2.2.1) is not representative for atmospheric Hg\(^{0}\) oxidation. Although the simulated \(\delta^{202}\text{Hg}^{atm} \) and \(\delta^{202}\text{Hg}^{anthro} \) are ~0.2‰ lower than their observed values (Table 1), they are within the 0.5‰ variation attributed to the Hg input source uncertainties in \(\delta^{202}\text{Hg} \). The simulated \(\delta^{202}\text{Hg}^{anthro} \) (~1.8‰) is higher than the average \(\delta^{202}\text{Hg} \) value of Chinese foliage/litter (~3.0‰) that is affected by anthropogenic Hg\(^{0}\) with low \(\delta^{202}\text{Hg} \), but is similar to the average \(\delta^{202}\text{Hg} \) values of European/
North American foliage/litter (−1.9‰) and global organic surface soils (−1.8‰) are comparable to the global mineral soils (−1.2‰) (Fig. 2B). The simulated δ²⁰²Hg atm (−1.2‰) is comparable to the global mineral soils (−1.39‰) (Fig. 2B). The simulated upper oceanic δ²⁰²Hg II values (0.2‰ − 0.5‰) are compatible with the slightly positive δ²⁰²Hg II values proposed for open surface ocean (0‰ − 0.2‰) by Blum et al. (2013). Thus, it appears that the optimization (i.e. sign inversion) of atmospheric photo-oxidation ε²⁰²Hg atm (0.4‰) is critical to attain satisfactory simulated reservoir δ²⁰²Hg II values. Given the multitude of fractionating processes, further assessment of marine and terrestrial redox δ²⁰²Hg is difficult in the MDF model.

5.2.2. Odd-mass independent fractionation (odd-MIF) model

Compared to the observations, the odd-MIF standard model predicts too low Δ¹⁹⁹Hg values for atmospheric and terrestrial reservoirs, and too high Δ¹⁹⁹Hg values for upper oceanic Hg II reservoir (Fig. 3). This is because the simulated surface ocean Hg attm has a very negative Δ¹⁹⁹Hg value (−1.5‰, Table 2) due to the large negative marine photo-reduction E¹⁹⁹Hgocean (II-0) (−2.70‰), which propagates to atmospheric and terrestrial reservoirs. This effect was shown previously for a global Hg odd-MIF model by Sonke (2011), who suggested that marine Hg odd-MIF is not needed to explain global Δ¹⁹⁹Hg distribution. Additionally, the same large negative atmospheric photo-reduction E¹⁹⁹Hg atm (II-0) results in low atmospheric and terrestrial Δ¹⁹⁹Hg values as well. Therefore, E¹⁹⁹Hgocean (II-0) and E¹⁹⁹Hg atm (II-0) are fitted to increase atmospheric and terrestrial Δ¹⁹⁹Hg values. The odd-MIF model #1 in Table 2 shows that a less strong atmospheric and marine photo-reductive odd-MIF (E¹⁹⁹Hg atm (II-0) = −1.75‰; E¹⁹⁹Hgocean (II-0) = 0.55‰) results in non-biased atmospheric Δ¹⁹⁹Hg values (Δ¹⁹⁹Hg atm = −0.11‰; Δ¹⁹⁹Hgocean = 0.41‰). However, the simulated Δ¹⁹⁹Hg values are positive for the terrestrial reservoir and negative for the oceanic Hg II reservoir (Table 2), which is inconsistent with observations on vegetation, soils and marine waters (Fig. 2B).

In the odd-MIF standard model, E¹⁹⁹Hg atm (II-0) associated with photo- and non-photo-reduction of Hg II in the terrestrial reservoirs are assigned values of 1‰ (MIE) and 0.2‰ (NVE), respectively (Table 2). An increase in terrestrial reduction E¹⁹⁹Hg atm (II-0) would reduce the Δ¹⁹⁹Hg value of terrestrial reservoir and increase the Δ¹⁹⁹Hg value of the atmospheric reservoir. Here, the odd-MIF model #1 is modified to include a larger E¹⁹⁹Hg atm (II-0) value. Simulation results show that a value of 5‰ for E¹⁹⁹Hg atm (II-0) along with a less strong atmospheric and marine photo-reductive odd-MIF (E¹⁹⁹Hgocean (II-0) = 0.00‰; E¹⁹⁹Hg atm (II-0) = −1.75‰) could well reproduce the observed Δ¹⁹⁹Hg values of fast/slow terrestrial and atmospheric reservoirs (odd-MIF model #2 in Table 2). However, such a large E¹⁹⁹Hg atm (II-0) value is not reported in the literature and seems implausible. This implies that the terrestrial Hg II emission flux in the model is incorrect (see discussion in section 5.3).

Marine Hg reduction and oxidation MIF factors are not studied experimentally. If we assume a zero value for the unknown oxidation E¹⁹⁹Hgocean (0-1‰), the fitted reduction E¹⁹⁹Hgocean (1-0) value is also zero. If E¹⁹⁹Hgocean (0-1‰) is assigned with a non-zero value, the fitted E¹⁹⁹Hgocean (1-0) will also change to this non-zero value. This implies that E¹⁹⁹Hgocean (0-1‰) and E¹⁹⁹Hgocean (1-0) is comparable in magnitudes or that the marine photo-oxidation and photo-reduction do not necessarily produce odd-MIF as argued by Sonke (2011). Experimental or field studies of marine Hg odd-MIF are lacking thus far. A recent study did observe intracellular photomicrobial odd-MIF in laboratory incubations of marine microalgae where the enrichment factor E¹⁹⁹Hg atm (0-1‰) was around −1‰. However, the importance of such photo-biological odd-MIF appears limited as the estimated reduction flux of 5 Mmol yr⁻¹ is much smaller than estimates of the abiotic photo-reduction flux of >10,000 Mmol yr⁻¹ (Zhang et al., 2015; Kritee et al., 2018).

In summary, optimization analysis of odd-MIF models suggests that a large terrestrial reduction E¹⁹⁹Hg atm (II-0) is important to model global Δ¹⁹⁹Hg distribution, and the magnitudes of odd-MIF associated with photo-oxidation and photo-reduction in the ocean are likely both very small.

5.2.3. Even-mass dependent fractionation (even-MIF) model

The even-MIF standard model does not reproduce the observed large Δ²⁰⁰Hg in wet deposition (Fig. 2C). The even-MIF standard model used a small atmospheric photo-oxidation E²⁰⁰Hg atm (0-1‰) of 0.05‰ (Table 3), a value based on the recent Hg⁰ oxidation experiment (Sun et al., 2016a). Fig. EA-1 shows that the relative difference (−0.2‰) between the observed Δ²⁰⁰Hg atm (−0.04‰) and Δ²⁰⁰Hg atm (0.17‰) (Fig. 2C) can only be achieved by fitting a value of 0.2‰ for E²⁰⁰Hg atm (0.4‰). However, the simulated Δ²⁰⁰Hg atm (−0.13‰) and Δ²⁰⁰Hg atm (0.08‰) (Fig. EA-1) are still ~0.10‰ lower than their observed values (even-MIF model #1 in Table 3). If we presume that even-MIF also occurs during marine Hg⁰ photo-oxidation in the ocean and E²⁰⁰Hg atm (0.4‰) has a value of −0.2‰, the model reproduces the observed Δ²⁰⁰Hg values of the atmospheric reservoir. However, the oceanic Hg III would develop negative Δ²⁰⁰Hg values, which are unlikely considering the observed positive Δ²⁰⁰Hg in coastal seawater (Strok et al., 2014, 2015) and the near-zero Δ²⁰⁰Hg of marine sediments (Gehrke et al., 2009; Mil-Homens et al., 2013; Yin et al., 2015). Whatever the oxidative even-MIF mechanism, it appears not to operate in the aqueous marine environment. Alternatively, the even-MIF model suggests that the uncertainties in Hg mass transfer processes likely bias the simulated Δ²⁰⁰Hg values (see below).

5.3. Uncertainties in Hg mass transfer processes

Three Hg fluxes deserve particular attention. Firstly, in the standard model, the atmospheric Hg⁰ atm dry and Hg⁰ atm wet deposition ratio to the terrestrial reservoir (Hg⁰ atm-ter/Hg⁰ atm-ter) has a value of 1 (Table EA-1). As discussed in the introduction section, the surface soil primarily receives Hg⁰ atm deposition via plant uptake, with a net Hg⁰ atm-ter/Hg⁰ atm-ter ratio of 2–4 (Demers et al., 2013; Jiskra et al., 2015; Enrico et al., 2016; Zheng et al., 2016;

Obrist et al., 2017). Secondly, Horowitz et al. (2017) recently implemented a fast two-step atmospheric Hg\(^0\) oxidation mechanism in the GEOS-Chem model, reducing Hg\(^0\) lifetime to <3 months, and requiring a significant increase of in-cloud aqueous Hg\(^\text{II}\) photo-reduction rate to match global Hg\(^0\) and Hg\(^\text{II}\) deposition observations. Compared to the mass transfer rate coefficients for atmospheric photo-oxidation (\(k_{\text{atm}}^\text{0-II}\)) and in-cloud photo-reduction (\(k_{\text{atm}}^\text{II-0}\)) in our standard model, Table EA-1), both \(k\) values are increased by a factor of \(\approx 2\) and \(\approx 7\), respectively, in Horowitz et al. (2017). Thirdly, the terrestrial Hg\(^0\) emission flux used to derive terrestrial Hg\(^0\) emission rate coefficient (\(k_{\text{ter}}^\text{II-0}\)) is only 160 Mg yr\(^{-1}\) (reflecting greater soil Hg retention as suggested by Amos et al., 2014) (Table EA-1), which is much lower than the value (\(\approx 600\) Mg yr\(^{-1}\), from \(-500\) Mg yr\(^{-1}\) at 37.5th percentile to \(1350\) Mg yr\(^{-1}\) at 67.5th percentile) established in a recent review (Agnan et al., 2016). We thus examine the sensitivity of simulated \(\delta^{202}\text{Hg}\) (Fig. 4), \(\Delta^{199}\text{Hg}\) (Fig. 5) and \(\Delta^{200}\text{Hg}\) (Fig. 6) to the following Hg mass transfer parameters: atmospheric Hg\(^0\) photo-oxidation \(k_{\text{atm}}^\text{0-II}\) (A), atmospheric Hg\(^\text{II}\) photo-reduction \(k_{\text{atm}}^\text{II-0}\) (B), Hg\(^\text{atm-ter/II}\)/Hg\(^\text{atm-ter/II}\) ratio (C) and terrestrial Hg\(^0\) emission \(k_{\text{ter}}^\text{II-0}\) (D).

As shown in Fig. 4, the simulated atmospheric Hg\(^\text{atm/0}\) and Hg\(^\text{atm/II}\) approach to their observed mean values when either atmospheric photo-reduction \(k_{\text{atm}}^\text{II-0}\) (B) or Hg\(^\text{atm-ter/II}\)/Hg\(^\text{atm-ter/II}\) ratio (C) is slightly increased. A prominent feature of Fig. 5 is that an increase in terrestrial emission \(k_{\text{ter}}^\text{II-0}\) could effectively decrease terrestrial \(\Delta^{199}\text{Hg}\) values (D), implying that a smaller terrestrial photo-reduction \(\Delta^{199}\text{Hg}_{\text{ter/II-0}}\) in odd-MIF model #2 (Table 2) can be fitted. If we increase \(k_{\text{ter}}^\text{II-0}\) by a factor of \(4\) (resulting in an increase of terrestrial Hg\(^0\) emission flux from \(160\) to \(\approx 600\) Mg yr\(^{-1}\) as suggested by Agnan et al., 2016) in odd-MIF model #2, the fitted \(\Delta^{199}\text{Hg}_{\text{ter/II-0}}\) can be decreased from \(5\)‰ to a more plausible value of \(2\)‰. This indicates that the terrestrial Hg\(^0\) emission flux of \(160\) Mg yr\(^{-1}\) in the standard model (Table EA-1) may be underestimated.

Even-MIF is thought to occur during atmospheric (net) Hg\(^0\) oxidation. We have shown in the even-MIF model #1 that a fitted value of \(0.22\)‰ for E\(^{200}\text{Hg}_{\text{atm/0-II}}\) could match the relative difference between the observed \(\Delta^{200}\text{Hg}_{\text{atm}}\) and \(\Delta^{200}\text{Hg}_{\text{atm}}\), but not the absolute values. To increase simulated \(\Delta^{200}\text{Hg}_{\text{atm}}\) (\(-0.13\)‰) and \(\Delta^{200}\text{Hg}_{\text{atm}}\) (\(0.08\)‰), it requires an increase of atmospheric photo-reduction \(k_{\text{atm}}^\text{II-0}\) (Fig. 6B) or Hg\(^\text{atm-ter/II}\)/Hg\(^\text{atm-ter/II}\) (Fig. 6C).

Fig. 4. Sensitivity of \(\delta^{202}\text{Hg}\) values (simulated by MDF model #1 in Table 1) in modern atmospheric, terrestrial and upper oceanic Hg\(^\text{II}\) reservoirs to variations in atmospheric Hg\(^0\) photo-oxidation rate coefficient (\(k_{\text{atm}}^\text{0-II}\)) (A), atmospheric Hg\(^\text{II}\) photo-reduction rate coefficient (\(k_{\text{atm}}^\text{II-0}\)) (B), atmospheric Hg dry and wet deposition ratio to the terrestrial reservoir (Hg\(^\text{atm-ter/II}\)/Hg\(^\text{atm-ter/II}\)) (C) and terrestrial Hg\(^0\) emission rate coefficient (\(k_{\text{ter}}^\text{II-0}\)) (D). The grey bars denote the observed atmospheric \(\delta^{202}\text{Hg}\) values.
Sensitivity analysis (even-MIF model #2) shows that an increase in the default atmospheric photo-reduction \(k_{\text{atm}}(\text{II-0}) \) by a factor of 12 reproduces both \(D_{200}\text{Hg}^{0\text{atm}}(0.04\% \text{‰}) \) and \(D_{200}\text{Hg}^{\text{IIatm}}(0.17\% \text{‰}) \) (Fig. EA-2A; Table 3). However, the even-MIF model #2 predicts a much larger \(\text{Hg}^{0\text{atm}} \) (8500 Mg) and smaller \(\text{Hg}^{\text{IIatm}} \) (370 Mg) reservoirs in the atmosphere, and an atmospheric THg mass about two times of modern values (4000–5600 Mg) (Fig. EA-2B) (Selin et al., 2008; Mason et al., 2012; Amos et al., 2013, 2014; Horowitz et al., 2014, 2017). A further sensitivity analysis (even-MIF model #3) shows that a 6 times larger \(k_{\text{atm}}(\text{II-0}) \) along with a \(\text{Hg}^{0\text{atm-ter}}/\text{Hg}^{\text{IIatm-ter}} \) ratio of 2.5 (within the range of \(\text{Hg}^{0\text{atm-ter}}/\text{Hg}^{\text{IIatm-ter}} \) ratio suggested by the new plant \(\text{Hg}^{0\text{atm}} \) uptake paradigm) also results in unbiased atmospheric \(\Delta^{200}\text{Hg} \) values (Fig. EA-2A; Table 3), and a reasonable atmospheric THg budget (4500 Mg) (Fig. EA-2B). Thus, it appears that fast atmospheric \(\text{Hg}^{0\text{atm}} \) dry deposition rate to terrestrial plants (i.e. foliar uptake, followed by intracellular oxidation, and limited re-emission, Manceau et al., 2018) is able to reconcile both MDF and MIF constraints. This reconciles with recent observations that vegetation uptake of atmospheric \(\text{Hg}^{0\text{atm}} \) drives seasonal and diurnal dynamics of atmospheric \(\text{Hg}^{0\text{atm}} \) (Jiskra et al., 2018).

The above discussion on Hg isotope enrichment factors and Hg mass transfer processes in our Hg isotope models indicates that MDF model #1 (fractionation sign inversion of atmospheric \(\text{Hg}^{0\text{atm}} \) photo-oxidation by Br, Table 1, Fig. 3), odd-MIF model #2 (strong fractionation of terrestrial \(\text{Hg}^{\text{IIter}} \) reduction, Table 2, Fig. 3) and even-MIF #3 (enhanced in-cloud aqueous \(\text{Hg}^{\text{IIatm}} \) photo-reduction and plant \(\text{Hg}^{0\text{atm}} \) uptake, Table 3) could well reproduce the observed Hg isotope compositions across different Earth’s reservoirs. For example, atmospheric \(\text{Hg}^{0\text{atm}} \) source tracing studies showed that continental background and marine-influenced \(\text{Hg}^{0\text{atm}} \) have apparently higher \(\delta^{202}\text{Hg} \) values than recent anthropogenic \(\text{Hg}^{0\text{atm}} \) emissions (Demers et al., 2015; Fu et al., 2016; Yu et al., 2016). The input of terrestrial \(\text{Hg} \) into the coastal regions explains the reported low \(\delta^{202}\text{Hg} \) and \(\Delta^{199}\text{Hg} \) values in the seawater, sediments and fish tissues from coastal areas (Senn et al., 2010; Perrot et al., 2012; Das et al., 2013; Li et al., 2014; Strok et al., 2014, 2015; Yin et al., 2015). The fitted models also indicate that upper oceanic \(\text{Hg}^{\text{IIatm}} \) reservoir has positive \(\delta^{202}\text{Hg} \) (0.2–0.5‰), \(\Delta^{199}\text{Hg} \)
(0.1–0.2‰) and D200Hg (0.02–0.03‰) (Fig. 3), similar to the values proposed for the open Pacific Ocean (Blum et al., 2013). Additionally, the Hg isotope difference between coastal and open ocean seawaters supports the observations that pelagic ocean fish has higher D202Hg and D199Hg than coastal and freshwater fish (Senn et al., 2010; Perrot et al., 2012; Blum et al., 2013; Li et al., 2014).

6. CONCLUDING REMARKS

We provide a mechanistic model framework to examine the controls of sources and biogeochemical processes on the Hg isotope distribution in various Earth’s surface reservoirs. The ensemble of MDF, odd-MIF and even-MIF sensitivity analyses indicates that (1) the limited set of available experimentally derived MDF and MIF factors cannot explain current Hg isotope observations; (2) MDF associated with atmospheric photo-oxidation likely enriches product HgII with light Hg isotopes; (3) terrestrial reduction odd-MIF is likely significant and marine odd-MIF associated with photo-oxidation and photo-reduction is possibly negligible in magnitude; (4) the following Hg fluxes are potentially not correct in global Hg models: atmospheric HgII photo-reduction, Hg0 dry deposition via plant uptake, terrestrial Hg0 emission.

Currently, the enrichment factors (or fractionation factors) used in the Hg isotope model are associated with large uncertainties, and the enrichment factors of some important Hg redox reactions (e.g. dissolved Hg0 oxidation in the ocean) are still lacking. An important future research avenue would be the determination of these enrichment factors under experimental conditions that are more representative of natural ecosystems. Further, the assembled Hg isotope observations used for simulation evaluation are potentially biased both spatially and temporally, and show high between-site heterogeneity. More measurements of Hg isotope compositions in various biogeochemical reservoirs, particularly the open ocean, are needed, which would provide more robust constrains on the global Hg cycling.

ACKNOWLEDGMENTS

This work was supported by the National Key Research and Development Plan (2017YFC0212700; 2016YFC0201600), the National Natural Science Foundation of China (41773104; 41602167; U1612442), and the Tianjin Natural Science Foundation.
APPENDIX A. SUPPLEMENTARY MATERIAL

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.gca.2018.11.036.

REFERENCES

Associate editor: Jan G. Wiederhold