Linking global contaminant releases to health in an era of environmental change

Biogeochemistry of Global Contaminants HARVARD

Elsie M Sunderland (ems@seas.harvard.edu)

SCHOOL OF PUBLIC HEALTH Powerful ideas for a healthier world

HARVARD

John A. Paulson School of Engineering and Applied Sciences

Human activities are transforming the global environment

1-in-6 children suffer from a neurodevelopmental abnormality, mostly of unknown causes.

10 million U.S. children below age 17 diagnosed with asthma (14% population) and 12% suffer from skin allergies.

http://braindrain.dk

Environmental Releases More than carbon

Environmental factors suspected as a primary cause of rise in chronic disease

Obesity has doubled in the past 30 years Diabetes has more than **tripled** since 1980

Autism spectrum disorders have **doubled** in the past 10 years

Epidemiology associates *human biomarkers* (blood, hair, nails) with health outcomes, so *how do we identify the exposure source?*

Question: What is the exposure source? Answer: Direct for air pollution. Complex pathways for aquatic toxicants.

Global Contaminants

HARVARD

Linking global contaminant releases to health in an era of environmental change

Three Examples

1. Hydroelectric power expansion and indigenous health in Canada

1. Emissions

2. Exposures pathways for PFAS from drinking water, seafood, and consumer products

3. Impacts of climate change on methylmercury in Atlantic bluefin tuna

6. Food webs

Biogeochemistry of Global Contaminants HARVARD

2. Deposition

Hydro dams and methylmercury

Before flooding

After flooding

organic carbon

- Inorganic Mercury
- Organic Carbon
- Methylmercury

The form of mercury determines its health impact

- Inorganic mercury (i.e., quicksilver and Hg")
 - Low absorption (0.01 7% avg)

- Methylmercury
 - High absorption (>90%)
 - Primarily a central nervous system toxin
 - Half-life of 50-70 days
 - Chelation not effective

Flooding soils causes a pulse in methylmercury

-La Grande 3 - Opinaca - Robert-Bourassa

This has been known for half a century!!

Northern communities are especially vulnerable to climate change and environmental pollutants

Nunatsiavut, the Labrador Inuit homeland

13

MeHg in Flooded Reservoir Increases Rapidly

Rapid increase in methylmercury in river water above saturated soils 3-days after flooding

Schartup et al., 2015

Field sampling downstream of Planned Hydro Facility Prior to Flooding

Methylmercury concentrations projected to increase by 10-fold (river) and 2.6 fold (estuary)

Mean Inuit exposure forecasted to double

Exposure of sensitive groups greatest concern

Calder et al., 2016

By IAN AUSTEN NOV. 10, 2016

The New York Times

Modeled water column MeHg (ng L⁻¹)

CBC 2016

Biogeochemistry of Global Contaminants HARVARD

Calder et al., 2016

These dams would increase global hydropower capacity by 73%

There's a high cost in doing Muskrat Falls wrong. There's power in doing it right. #makemuskratright

Three Examples

What are poly- and perfluoroalkyl substances (PFAS)?

Human studies suggest PFAS exposure may...

increase risk of thyroid disease

increase blood cholesterol levels

> decrease the body's response to vaccines

decrease fertility in women

increase risk of high blood pressure & preeclampsia

> lower infant birth weight

Slide from: https://ncpfastnetwork.com/printed-materials/

Drinking water supplies for 6 million Americans above provisional guidelines for PFASs

Hydrological units with detectable PFASs

Point sources

PFAS are "Forever-Chemicals" F-C backbone does not degrade in nature

More bioaccumulative, more persistent

Pathways of Human Exposure to PFAS

Sunderland et al., 2019

How quickly will toxicants in ocean food webs decline after global regulations?

Parent chemical to perfluorooctane sulfonate (PFOS) phased out by 3M between 2000-2002

Modeled PFOS in North Atlantic seawater (10 m)

X. Zhang et al., 2017

Large decline in FOSA in Pilot Whales

Decline in legacy PFAS in children likely driven by changes in consumer products

Three Examples

HARVARD

Methylmercury is a bioaccumulative neurotoxin

Societal Costs of methymercury exposure in US & Europe > \$15 B (Bellanger et al., 2013; Grandjean et al., 2012)

Tuna accounts for almost 40% of US population-wide methylmercury exposure

Decadal differences 2000 – 2010

Sunderland et al., 2018

Biogeochemistry of Global Contaminants HARVARD

U.S. mercury emissions, major sources 1990, 2005, 2008, 2011

Controls on US utilities and products help explain 30% declines in atmospheric Hg concentrations

Observed Trends atmospheric Hg⁰ (1990-2010)

US utilities Hg^{II} emissions

US wet deposition trend, 1990-2010

Y. Zhang et al., 2016 ³⁸

Warming affects fish metabolism and growth, MeHg elimination, prey availability, and species habitat

Atlantic Bluefin Tuna (ABFT): Age 14 Years

>20% decrease between 1990-2010

~50% Increase between 1970-2015

Schartup et al., 2019, Nature 40

Current plateau in global Hg emissions means seawater warming will be important factor for methylmercury in marine fish

41

Societal costs of different energy choices have not been fully evaluated; unquantified costs are LARGE

Portion of U.S. air pollution that comes from power plants

Biogeochemistry of Global Contaminants HARVARD

Summary

- Hydroelectric power expansion warrants careful consideration. Design that minimizes environmental impacts is possible but rarely discussed.
- PFAS is consumer products is likely the main exposure pathway for the general population outside of contaminated communities where drinking water dominates.
- Global regulations can be extremely effective at reducing exposures as illustrated for PFOS.
- Regulations on carbon and mercury emissions from coal-fired utilities are both needed to prevent further methylmercury accumulation in fish

Acknowledgements

Biogeochemistry of Global Contaminants HARVARD